Distinguishability of Sets of Distributions
نویسندگان
چکیده
منابع مشابه
Similarity vs. Possibility in measuring Fuzzy Sets Distinguishability
Two measures that quantify distinguishability of fuzzy sets are addressed in this paper: similarity, which exhibits sound theoretical properties but it is usually computationally intensive, and possibility, whose calculation can be very efficient but does not exhibit the same properties of similarity. It is shown that under mild conditions – usually met in interpretable fuzzy modelling – possib...
متن کاملFrom Absolute Distinguishability to Positive Distinguishability
We study methods of converting algorithms that distinguish pairs of distributions with a gap that has an absolute value that is noticeable into corresponding algorithms in which the gap is always positive (and noticeable). Our focus is on designing algorithms that, in addition to the tested string, obtain a fixed number of samples from each distribution. Needless to say, such algorithms can not...
متن کاملthe pathology of historical texts translation: a study of persian translations of 7th volume of cambridge history of iran
ترجمه با گسترش زبان آغاز شده و اهمیت آن روز به روز افزایش می یابد، و برای اولین بار به عنوان شاخه ای از دانش و روشی برای انتقال علوم، فرهنگ و تجربه در در دوره قاجار در ایران آغاز شد. در حقیقت متون تاریخی از اولین متونی هستند که در ایران ترجمه شدند چرا که به سیاستمداران آن دوره کمک می کردند تا به علل موفقیت جهان غرب و پیشرفت هایشان در طول تاریخ پی ببرند، بنابراین به تدریج ترجمه این گونه متون رون...
15 صفحه اولTermination in Convex Sets of Distributions
Convex algebras, also called (semi)convex sets, are at the heart of modelling probabilistic systems including probabilistic automata. Abstractly, they are the Eilenberg-Moore algebras of the finitely supported distribution monad. Concretely, they have been studied for decades within algebra and convex geometry. In this paper we study the problem of extending a convex algebra by a single point. ...
متن کاملSets of probability distributions, independence, and convexity
This paper analyzes concepts of independence and assumptions of convexity in the theory of sets of probability distributions. The starting point is Kyburg and Pittarelli’s discussion of “convex Bayesianism” (in particular their proposals concerning E-admissibility, independence, and convexity). The paper offers an organized review of the literature on independence for sets of probability distri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematical Statistics
سال: 1958
ISSN: 0003-4851
DOI: 10.1214/aoms/1177706531